TRANSITIVE STEINER AND KIRKMAN TRIPLE SYSTEMS OF ORDER 27

CHARLES J. COLBOURN, SPYROS S. MAGLIVERAS, AND RUDOLF A. MATHON

Abstract

There are 71 Steiner triple systems of order 27 whose automorphism groups are point-transitive, and there are 248 transitive Kirkman triple systems of order 27. Computational methods used to find these designs are outlined. The designs and some of their properties are presented.

1. Steiner triple systems and their groups

A Steiner triple system of order v, briefly $\operatorname{STS}(v)$, is a pair (V, \mathscr{B}) where V is a set of v elements and \mathscr{B} is a set of 3-element subsets of V, with the property that every 2 -subset of V appears in exactly one subset of \mathscr{B}. Sets in \mathscr{B} are triples. An automorphism of an $\operatorname{STS}(v)$ is a permutation on V that maps each triple in \mathscr{B} to a triple of \mathscr{B}, and the automorphism group is the group of all automorphisms of the STS. The STS is transitive if the automorphism group acts transitively on V; it is cyclic when the group contains Z_{v} as a subgroup, and abelian if there is an abelian subgroup of the automorphism group that acts transitively on V.

Steiner triple systems with large automorphism groups, and in particular transitive STS, are studied in large part because they yield examples of Steiner triple systems with interesting "regularity." There is an extensive literature on cyclic STS [2], but for the closely related case of transitive STS , especially nonabelian STS, little is known.

Transitive STS of order 21 have been constructively enumerated [5]; there are seven cyclic designs and three other transitive ones. Subsequently, Tonchev [8] constructively enumerated the transitive STS(25); there are three over $Z_{5} \times Z_{5}$, in addition to the twelve over Z_{25} known since the 1930s [1].

For order 27, there are five possible automorphism groups to be considered. Three are the abelian groups $Z_{3} \times Z_{3} \times Z_{3}, Z_{9} \times Z_{3}$, and Z_{27}. In addition, there are two nonabelian groups [3]. The first of these has all group elements of order 3, while the second has Z_{9} as a subgroup. Every transitive $\operatorname{STS}(27)$ has (at least) one of these contained in its automorphism group. Cyclic STS(27)'s have been generated previously [1], as have the "1-rotational" STS(27)'s [7].

In this paper, we exhibit all transitive $\operatorname{STS}(27)$'s. There are eight cyclic ones [1]; we find that there are 71 transitive STS(27)'s in total. In addition to presenting these designs, we give an extensive computational analysis of them.

Received June 21, 1990; revised January 15, 1991.
1991 Mathematics Subject Classification. Primary 05B07, 51E10.

We list numbers of subdesigns, group orders, and whether or not the design is resolvable.

A parallel class in an STS is a spanning set of pairwise disjoint triples. A resolution is a partition of the triples of the STS into parallel classes. A Steiner triple system along with a resolution of it is a Kirkman triple system, or KTS. An automorphism of the STS is also an automorphism of a Kirkman triple system that it supports, provided the automorphism preserves the parallel classes of the resolution. In general, a Steiner triple system that is transitive can be resolvable in many ways; some Kirkman triple systems so arising may be transitive, while others are not. For a transitive STS, a transitive resolution (under a group Γ) is a resolution whose parallel classes are preserved under the action of Γ. A transitive KTS is a Kirkman triple system whose automorphism group acts transitively on elements (and, of course, preserves the resolution).

We examine all resolutions of the transitive $\operatorname{STS}(27)$ that are preserved by one of the groups acting transitively on 27 elements; we establish that there are precisely 248 nonisomorphic transitive Kirkman triple systems of order 27. We exhibit a compact representation of each, along with its group order.

Janko and van Trung [4] have previously found all 661 "2-rotational" KTS(27)'s, each necessarily having group order divisible by 13 . Only one of their designs is also transitive as a Kirkman triple system, and hence 247 of the designs we exhibit appear to be previously unpublished.

Before presenting the catalogues of designs, we outline the computational methods used. Let Γ be one of the five groups of order 27 , presented as a transitive permutation group on V, a set of 27 elements. The action of Γ partitions the 3 -subsets of V into orbits T_{1}, \ldots, T_{t}, and partitions the pairs into orbits P_{1}, \ldots, P_{p}. Now form a matrix $A=A_{23}(\Gamma)$, whose (i, j) entry is the number of times a fixed pair in orbit P_{i} appears in triples of orbit T_{j}. Let U be a 0,1 -solution to the matrix equation $A U=\underline{1}$. Then U is the characteristic vector of a Steiner triple system whose automorphism group contains Γ.

Solutions of this matrix equation are in one-to-one correspondence with distinct STS(27)'s whose automorphism group contains Γ. Hence all such STS(27) 's can be found by solving a binary knapsack problem. However, we are interested only in nonisomorphic solutions. Applying a permutation π in the normalizer of Γ in Sym_{27} (the symmetric group on 27 symbols) carries an STS to an isomorphic, but possibly distinct, STS. Using the normalizer of Γ to eliminate duplicates in the search for the solutions to the matrix equation substantially reduces the number of solutions to be examined. Finally, we find one representative of each isomorphism type, and its automorphism group, using the graph isomorphism program "nauty" of McKay [6].

Parallel classes are found as follows. Form a 117-vertex block nonintersection graph, having a vertex representing each block, and two vertices adjacent when the corresponding blocks are disjoint. A parallel class is a 9-clique in this graph. Each parallel class generates an orbit of parallel classes under the action of Γ. Such an orbit may have all parallel classes having no triples in common (a type1 class), or two parallel classes of the orbit may share a triple (a type-2 class). A transitive resolution contains only type-1 classes. To check resolvability (not necessarily transitive), form a graph whose vertices are the parallel classes, and make two vertices adjacent if the corresponding parallel classes have no common triple. A resolution is a 13 -clique in this graph. In a typical case, the graph has
thousands of vertices (parallel classes), and so we did not find all resolutions, but verified the existence or nonexistence of one.

Finding transitive resolutions is an easier matter. One first eliminates all type-2 classes. Then the remaining parallel classes fall into orbits under Γ. We form a graph whose vertices are the orbits of parallel classes, where each vertex has a weight equal to the number of parallel classes in the orbit. Two vertices are adjacent if no parallel class in the orbit represented by one vertex shares a triple with a parallel class of the orbit represented by the second vertex. Then a transitive resolution (that is, a transitive Kirkman triple system) is a clique of weight 13 in this graph.

Finally, determining the nonisomorphic transitive Kirkman triple systems was again performed by nauty. The success of the approach here rests on the effective solution of two difficult problems: an integer knapsack problem, and a clique problem. These are the same problem in disguise; the approach used is a heuristic method that quickly prunes the number of cases to be considered.

To determine the solutions of the binary knapsack problem $A U=J$, we use an algorithm called SYNTH. At present, SYNTH is ideally suited for problems in which A has several thousand columns but fewer than 100 rows, and determines all possible solutions. In this recursive algorithm, a column X of A which has a 1 in the first row is selected. All rows in wnich X has a 1 are marked for deletion, and so are all columns of A that are not orthogonal to X (that is, those that have nonzero inner product with column X). A synthem is a pair of binary vectors indicating which rows are active (not marked for deletion), and which columns are active. Synthems are used to pass information about these "conceptual" differences recursively to the main function in SYNTH. The synthem passed is then used to prune the possible solution space. This pruning process conceptually yields submatrix A^{\prime} of A (without actually incurring the overhead of carrying out the deletions physically), and the algorithm recursively determines all solutions to subproblem $A^{\prime} U^{\prime}=J^{\prime}$. The above deletions are relative only to the subproblem indicated by the synthem. The algorithm proceeds to select the second column X of A with a 1 in A 's first row, and the process continues until all 1 's in row one of A have been considered.

2. Transitive STS of order 27

In this section, we exhibit all 71 transitive Steiner triple systems of order 27. We report nonisomorphic solutions for each of the five groups; some designs are represented over more than one of the groups, but we assign each isomorphism type of design a unique number that is used throughout. When a design has a presentation over more than one group, we give a presentation of it over each relevant group.

For each design, the number of subdesigns has been determined; none has a subdesign of order 7 or 13 , and the only admissible order for a subdesign is 9 . We report the number of subdesigns for each design under column "S."

It is an easy exercise to see that each design has a parallel class, since there is some orbit of nine triples in each solution. However, not all of the designs are resolvable. Under the column "Res," we report on resolvability of each design as follows. " N " indicates that the design has no resolution at all. " R " indicates that it is resolvable but has no transitive resolution under the action of the
group. "T" indicates that it has a transitive resolution, and the accompanying number is the number of such resolutions under the action of the group. In the case of design 50 , the design has a unique resolution, and this resolution is transitive.

We have also computed the number of parallel classes in each design; this ranges from 478 (design 44) to 17641 (design 1). Design 1 is of course the affine geometry; hence, the fact that it maximizes the number of parallel classes, resolutions, transitive resolutions, and subdesigns, comes as no surprise.

Finally, we have also computed cycle structures [2] for each design. Design 1 has a 2-transitive automorphism group, and hence its cycle structure must be the same for all pairs of elements (i.e., it is uniform). Remarkably, design 2 is also uniform and has the same cycle structures as design 1. None of the remaining 69 are uniform, although designs 3 and 6 have only two different cycle structures.

For compactness, we list the designs with element set $\{a, b, \ldots, y, z, A\}$, listing a block $\{a, b, c\}$ as $a b c$. We only list orbit representatives for each design. To obtain the full set of 117 blocks, one applies the group generated by the generators given in each case to find the orbits of the representative triples; their union is the block set of the design.
2.1. The nonabelian group of exponent three. We present here the results for the nonabelian group of order 27 having all group elements of order 3. We use the set of three generators:

> bcaxutmpjkirng fwsAyovehzqdl
> drhealpicfmjxAzqgsbwtnukoyv
> ftoljgazyqspbcndewumkixrvAh

There are forty nonisomorphic Steiner triple systems carried by this group; we present them here in compact form:

	Order	S Res	Orbit Representatives
1	303264	39 T 729	abc ade af g ahu aix ajp akA alq amo ant arv asz awy
2	11664	12 T 567	abc ade afg ahk aix ajp alq amo ant arv awy
3	486	3 R	abc ade a fh aix ajp alq amo ant arv asz awy
4	432	3 T15	abc ade afg ahi akA alv amo ant awy
5	162	3 T 27	abc ade a f g ahi ak A alq amo ant arv asz awy
6	162	3 R	abc ade aft air ajp alq amo ant asz
7	81	3 T 21	abc ade afg ahk aij alq amo arv awy
8	81	0 T6	abc ade af g ahi akm anw arv
9	81	0 T3	abc ade afg ahj ain aky asz
10	54	3 R	abc ade a fhaij alq amo arv asz awy

> 11543 R abcade afh ain ajp amo arvasz awy
> 12540 T9 abcade afg ahiaknalv amo
> 13543 T 5 abcade afg ahk aijalr awy
> 14543 R abcadeafhain ajmarvasz
> 15543 T3 abcadeafhaix ajvalnasz
> 16543 R abcadeafiahlajsakAawy
> 17270 T 5 abc ade afg ahiakm ant arvasz awy
> 18270 T 5 abcade afg ahiakA alq amo ans awy
> 19270 R abcade afh aim ajp alq ant arv awy
> 20270 T3 abcade afg ahiakl amo ans
> 21270 T2 abc ade afg ahiakm ans awy
> 22270 T3 abcade afg ahi aknalq amz
> 23270 T1 abcade afg ahiaknalr asz
> 24270 T2 abcade afg ahj aiqaknasz
> 25270 T1 abcade afhaijalq amzawy
> 26273 R abcadeafhaijalraszawy
> 27270 R abcade afhaijalv amo awy
> 28270 T1 abcade afh aim ajp aln arv
> 29270 T1 abc ade afh aim ajt alq awy
> 30270 R abcade afh ain ajpamzawy
> 31270 R abcade afhaiqajw ant arv
> 32270 R abcadeafhairajnalq amo
> 33270 T2 abcade afh air ajp alt amo
> 34270 T1 abcade afh aix ajmalt arv
> 35270 T1 abcade afhaix ajmalv ant
> 36270 T2 abc adf ahmakl ans
> 37270 T3 abc adf ahq aik amz
> 38270 T1 abcadfaht aim akl
> 39270 T2 abc adf ahv aim akn
> 40270 T 1 abcadf ahxakl amz
2.2. The nonabelian group of exponent nine. In this subsection, we treat the cases for the nonabelian group having a subgroup isomorphic to Z_{9}, having generators:

> dule fghijkamnopqrscAvwxyztb
> bcaxAwtvzuygkfjeidhlosnrmqp

This group carries 18 nonisomorphic triple systems, as follows:

No.	Order	S Res	Orbit Representatives
1	303264	39 T 39	abc ady aeu afi agv anz aqw
2	11664	12 T 9	abn ad A aex afiagy
3	486	3 R	$a b f a d A$ aex agy aqw
41	81	0 T 5	abl adwaeuafiagn
42	27	0 R	abl adf ags am A anz
43	27	0 T2	abl adg aex amA anz
44	27	0 T1	abl adi aex amz aqw
45	27	0 R	abl adi aex amA anz
46	27	0 R	abl adjags amz aqw
47	27	0 T 1	abl adjags amA anz
48	27	0 N	abl ads aeh amw anz
49	27	0 T1	abl ads aei amw anz
50	27	0 T1	abl adv aeh anz aq A
51	27	0 T2	abl adv aei anz aq A
52	27	0 T3	abl advaez afiagw
53	27	0 T5	abladw aez afiagm
54	27	0 T4	abl adx aeo a fiagr
55	27	0 T4	abladxaeuafiagz

2.3. The group $Z_{3} \times Z_{3} \times Z_{3}$. For the elementary abelian group Z_{3}^{3}, we use the three generators:
bcaefdhigkljnomqrptuswxvzAy
defghiabcmnopqrjklvwxyzAstu
jklmnopqrstuvwxyz Aabcde fghi

This group carries five nonisomorphic triple systems, all of which are carried as well by at least one of the groups already handled.

2.4. The group $Z_{9} \times Z_{3}$. Here we give solutions for the abelian group $Z_{9} \times Z_{3}$, with generators:
dlmefghijkanuopqrstbvwxyzAc
bcalnopqrstmduvwxyz Aef ghijk
This group carries 15 nonisomorphic triple systems, as follows:

2.5. The group Z_{27}. The cyclic designs have been known for over fifty years [1]. We include them here for completeness, using the generator:
bcde fghijklmnopqrstuvwxyzAa
There are eight nonisomorphic cyclic STS(27):
No. Order S Res Orbit Representatives
64270 N abd ael afpagoajs
65270 N abdaelafpagtajs
66270 R abdaelafragoajs
$6727 \quad 0 \quad \mathrm{~T} 2$ abdaelafragtajs
6827 T2 abd aeo afl ahpajs
69270 N abdaeoaflahtajs
70270 N abd aerafvahpajs
71270 R abd aerafvahtajs

3. Transitive Kirkman triple systems

Forty-nine of the Steiner triple systems exhibited in $\S 2$ can be resolved in such a way that the Kirkman triple system is also transitive. In the appendix
(Supplement section at the end of this issue), we exhibit all nonisomorphic transitive Kirkman triple systems of order 27. There are 248 altogether. Hence we resort to a compact representation of the systems.

We list only those parallel classes that suffice to generate the thirteen parallel classes under the action of the groups (as given in §2). Each required parallel class is also listed in a compressed manner. Any automorphism of order 3 on the Kirkman system must either fix a parallel class, or must move the entire parallel class. If it fixes the parallel class, it may either fix the blocks of the parallel class, or permute them within the parallel class. In general, for each parallel class, some subgroup of the group of order 27 acting on the design fixes that parallel class. Hence it suffices to prescribe orbit representatives of the blocks in the parallel class in its stabilizing subgroup.

Each parallel class can therefore be succinctly described using the generators from $\S 2$ to specify the stabilizer of the parallel class, and listing orbit representatives for the parallel class under this subgroup. We specify the stabilizer of the parallel class by specifying a subgroup code, which is an integer from $\{0, \ldots, 7\}$. It is interpreted as follows. For the two groups having all elements of order 3, let $\pi_{1}, \pi_{2}, \pi_{3}$ be the three generators (in the same order) as given in $\S 2$. For the two groups requiring two generators, let π_{2}, π_{3} be the two generators as given in $\S 2$, and let $\pi_{1}=\pi_{2}^{3}$. For Z_{27}, let π_{3} be the generator given in $\S 2, \pi_{2}=\pi_{3}^{3}$ and $\pi_{1}=\pi_{3}^{9}$. It is important to remark that an automorphism of order 9 may move a parallel class, while the cube of the same automorphism fixes it; hence, we require these redundant generators in specifying the stabilizer of each parallel class.

Now with permutations chosen in this way, write the subgroup code as a 3-bit binary number $b_{3} b_{2} b_{1}$; the stabilizer is found by generating the minimal subgroup containing $\pi_{1}^{b_{1}}, \pi_{2}^{b_{2}}$, and $\pi_{3}^{b_{3}}$. Each parallel class is written as a subgroup code, followed by orbit representatives for the parallel classes; parallel classes are separated in the listing by colons.

Therefore, to recover the entire resolution, one first finds the stabilizer for each parallel class in turn, and applies all permutations in the stabilizer to reconstruct the parallel class. Then one applies the action of the entire group to find all thirteen parallel classes.

We give an example of the process here. Over the second nonabelian group, the following is a compact representation of a Kirkman triple system: 4 adv egj $f m z: 6 \mathrm{anz}: 2 \mathrm{fnu}$. There are three orbits of parallel classes. To recover the orbit representatives for all parallel classes, apply the second generator to $a d v, e g j, f m z$, both generators to $a n z$, and the first generator to $f n u$. This yields the three parallel classes:

```
advbxs chr egj tuA lop fmz kqw iny
anz dot epA bfq gru hsv ciw jlx kmy
fnu gov hpw iqx jry ksz act dlA bem
```

Now apply both generators to produce all parallel classes in the orbits of these three. The orbit lengths obtained are 9,1 , and 3 for the three parallel classes given:

```
advbxs chr egj tuA lop fmz kqw iny
dewcuy ils fhk bvA mpq gnt arx joz
efx lvz cjm agi buw nqr hoA dsy kpt
fgy mtw kln dhj uvx ors bip cez aqA
ghz nxA amo eik vwy cps jqu flt bdr
hit boy dnp afj wxz clq krv gmA esu
ijA puz eoq dgk txy lmr asw bhn cfv
bjk qtv fpr aeh yzA mns cdx iou glw
akurwA gqs dfi btz cno ely jpv hmx
anz dot epA bfq gru hsv ciw jlx kmy
fnu gov hpw iqx jry ksz act dlA bem
fow jst env irz dmu hqy abl gpx ckA
jnw hlu fsA dqz kox imv bcg ert apy
```


Acknowledgments

Research of the first author is supported by NSERC Canada under grant number A0579. Research of the second author is supported under NSA grant 88F066, and by the Center for Communications and Information Science, UNL. Research of the third author is supported by NSERC Canada under grant A8651.

Bibliography

1. S. Bays, Sur les systèmes cycliques de triples de Steiner différent pour n premier (ou puissance de nombre premier) de la forme $6 n+1$, Comment. Math. Helv. 4 (1932), 183-194.
2. M. J. Colbourn and R. A. Mathon, On cyclic Steiner 2-designs, Ann. Discrete Math. 7 (1980), 215-253.
3. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
4. Z. Janko and T. van Trung, On projective planes of order 12 with an automorphism of order 13. Part 1: Kirkman designs of order 27, Geom. Dedicata 11 (1981), 257-284.
5. R. A. Mathon, K. T. Phelps, and A. Rosa, A class of Steiner triple systems of order 21 and associated Kirkman systems, Math. Comp. 37 (1981), 209-222.
6. B. D. McKay, Practical graph isomorphism (Proc. Tenth Manitoba Conf. Numerical Math. Computing), Congr. Numer. 30 (1981), 45-87.
7. K. Phelps and A. Rosa, Steiner triple systems with rotational automorphisms, Discrete Math. 33 (1981), 57-66.
8. V. D. Tonchev, Transitive Steiner triple systems of order 25, Discrete Math. 67 (1987), 211-214.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68858

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 1A4, Canada

