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TRANSITIVE STEINER AND KIRKMAN TRIPLE SYSTEMS 
OF ORDER 27 

CHARLES J. COLBOURN, SPYROS S. MAGLIVERAS, AND RUDOLF A. MATHON 

ABSTRACT. There are 71 Steiner triple systems of order 27 whose automorphism 
groups are point-transitive, and there are 248 transitive Kirkman triple systems 
of order 27. Computational methods used to find these designs are outlined. 
The designs and some of their properties are presented. 

1. STEINER TRIPLE SYSTEMS AND THEIR GROUPS 

A Steiner triple system of order v, briefly STS(v), is a pair (V, q) where 
V is a set of v elements and q is a set of 3-element subsets of V, with the 
property that every 2-subset of V appears in exactly one subset of q . Sets 
in q' are triples. An automorphism of an STS(v) is a permutation on V that 
maps each triple in q' to a triple of W, and the automorphism group is the 
group of all automorphisms of the STS. The STS is transitive if the automor- 
phism group acts transitively on V; it is cyclic when the group contains Z, as 
a subgroup, and abelian if there is an abelian subgroup of the automorphism 
group that acts transitively on V. 

Steiner triple systems with large automorphism groups, and in particular tran- 
sitive STS, are studied in large part because they yield examples of Steiner triple 
systems with interesting "regularity." There is an extensive literature on cyclic 
STS [2], but for the closely related case of transitive STS, especially nonabelian 
STS, little is known. 

Transitive STS of order 21 have been constructively enumerated [5]; there 
are seven cyclic designs and three other transitive ones. Subsequently, Tonchev 
[8] constructively enumerated the transitive STS(25); there are three over 
Z5 X Z5, in addition to the twelve over Z25 known since the 1930s [1]. 

For order 27, there are five possible automorphism groups to be considered. 
Three are the abelian groups Z3 X Z3 X Z3, Z9 X Z3, and Z27. In addition, 
there are two nonabelian groups [3]. The first of these has all group elements of 
order 3, while the second has Z9 as a subgroup. Every transitive STS(27) has 
(at least) one of these contained in its automorphism group. Cyclic STS(27) 's 
have been generated previously [1], as have the "l-rotational" STS(27) 's [7]. 

In this paper, we exhibit all transitive STS(27)'s. There are eight cyclic 
ones [1]; we find that there are 71 transitive STS(27) 's in total. In addition to 
presenting these designs, we give an extensive computational analysis of them. 
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We list numbers of subdesigns, group orders, and whether or not the design is 
resolvable. 

A parallel class in an STS is a spanning set of pairwise disjoint triples. A 
resolution is a partition of the triples of the STS into parallel classes. A Steiner 
triple system along with a resolution of it is a Kirkman triple system, or KTS. 
An automorphism of the STS is also an automorphism of a Kirkman triple sys- 
tem that it supports, provided the automorphism preserves the parallel classes 
of the resolution. In general, a Steiner triple system that is transitive can be 
resolvable in many ways; some Kirkman triple systems so arising may be tran- 
sitive, while others are not. For a transitive STS, a transitive resolution (under 
a group F) is a resolution whose parallel classes are preserved under the action 
of F. A transitive KTS is a Kirkman triple system whose automorphism group 
acts transitively on elements (and, of course, preserves the resolution). 

We examine all resolutions of the transitive STS(27) that are preserved by 
one of the groups acting transitively on 27 elements; we establish that there are 
precisely 248 nonisomorphic transitive Kirkman triple systems of order 27. We 
exhibit a compact representation of each, along with its group order. 

Janko and van Trung [4] have previously found all 661 "2-rotational" 
KTS(27)'s, each necessarily having group order divisible by 13. Only one of 
their designs is also transitive as a Kirkman triple system, and hence 247 of the 
designs we exhibit appear to be previously unpublished. 

Before presenting the catalogues of designs, we outline the computational 
methods used. Let F be one of the five groups of order 27, presented as a 
transitive permutation group on V, a set of 27 elements. The action of F 
partitions the 3-subsets of V into orbits T, ... , Tt, and partitions the pairs 
into orbits PF, ..., Pp . Now form a matrix A = A23(F), whose (i, j) entry is 
the number of times a fixed pair in orbit Pi appears in triples of orbit Tj . Let U 
be a 0, 1-solution to the matrix equation AU = 1 . Then U is the characteristic 
vector of a Steiner triple system whose automorphism group contains F. 

Solutions of this matrix equation are in one-to-one correspondence with 
distinct STS(27) 's whose automorphism group contains F. Hence all such 
STS(27)'s can be found by solving a binary knapsack problem. However, we 
are interested only in nonisomorphic solutions. Applying a permutation ir in 
the normalizer of F in Sym27 (the symmetric group on 27 symbols) carries 
an STS to an isomorphic, but possibly distinct, STS. Using the normalizer 
of F to eliminate duplicates in the search for the solutions to the matrix equa- 
tion substantially reduces the number of solutions to be examined. Finally, we 
find one representative of each isomorphism type, and its automorphism group, 
using the graph isomorphism program "nauty" of McKay [6]. 

Parallel classes are found as follows. Form a 1 1 7-vertex block nonintersection 
graph, having a vertex representing each block, and two vertices adjacent when 
the corresponding blocks are disjoint. A parallel class is a 9-clique in this graph. 
Each parallel class generates an orbit of parallel classes under the action of F. 
Such an orbit may have all parallel classes having no triples in common (a type- 
1 class), or two parallel classes of the orbit may share a triple (a type-2 class). 
A transitive resolution contains only type-i classes. To check resolvability (not 
necessarily transitive), form a graph whose vertices are the parallel classes, and 
make two vertices adjacent if the corresponding parallel classes have no common 
triple. A resolution is a 13-clique in this graph. In a typical case, the graph has 
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thousands of vertices (parallel classes), and so we did not find all resolutions, 
but verified the existence or nonexistence of one. 

Finding transitive resolutions is an easier matter. One first eliminates all 
type-2 classes. Then the remaining parallel classes fall into orbits under F. We 
form a graph whose vertices are the orbits of parallel classes, where each vertex 
has a weight equal to the number of parallel classes in the orbit. Two vertices 
are adjacent if no parallel class in the orbit represented by one vertex shares a 
triple with a parallel class of the orbit represented by the second vertex. Then a 
transitive resolution (that is, a transitive Kirkman triple system) is a clique of 
weight 13 in this graph. 

Finally, determining the nonisomorphic transitive Kirkman triple systems 
was again performed by nauty. The success of the approach here rests on the 
effective solution of two difficult problems: an integer knapsack problem, and a 
clique problem. These are the same problem in disguise; the approach used is 
a heuristic method that quickly prunes the number of cases to be considered. 

To determine the solutions of the binary knapsack problem AU = J, we use 
an algorithm called SYNTH. At present, SYNTH is ideally suited for problems 
in which A has several thousand columns but fewer than 100 rows, and de- 
termines all possible solutions. In this recursive algorithm, a column X of A 
which has a 1 in the first row is selected. All rows in which X has a 1 are marked 
for deletion, and so are all columns of A that are not orthogonal to X (that is, 
those that have nonzero inner product with column X). A synthem is a pair 
of binary vectors indicating which rows are active (not marked for deletion), 
and which columns are active. Synthems are used to pass information about 
these "conceptual" differences recursively to the main function in SYNTH. The 
synthem passed is then used to prune the possible solution space. This pruning 
process conceptually yields submatrix A' of A (without actually incurring the 
overhead of carrying out the deletions physically), and the algorithm recursively 
determines all solutions to subproblem A' U' = J'. The above deletions are rel- 
ative only to the subproblem indicated by the synthem. The algorithm proceeds 
to select the second column X of A with a 1 in A's first row, and the process 
continues until all l's in row one of A have been considered. 

2. TRANSITIVE STS OF ORDER 27 

In this section, we exhibit all 71 transitive Steiner triple systems of order 27. 
We report nonisomorphic solutions for each of the five groups; some designs are 
represented over more than one of the groups, but we assign each isomorphism 
type of design a unique number that is used throughout. When a design has a 
presentation over more than one group, we give a presentation of it over each 
relevant group. 

For each design, the number of subdesigns has been determined; none has a 
subdesign of order 7 or 13, and the only admissible order for a subdesign is 9. 
We report the number of subdesigns for each design under column "S." 

It is an easy exercise to see that each design has a parallel class, since there is 
some orbit of nine triples in each solution. However, not all of the designs are 
resolvable. Under the column "Res," we report on resolvability of each design 
as follows. "N" indicates that the design has no resolution at all. "R" indicates 
that it is resolvable but has no transitive resolution under the action of the 
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group. "T" indicates that it has a transitive resolution, and the accompanying 
number is the number of such resolutions under the action of the group. In 
the case of design 50, the design has a unique resolution, and this resolution is 
transitive. 

We have also computed the number of parallel classes in each design; this 
ranges from 478 (design 44) to 17641 (design 1). Design 1 is of course the 
affine geometry; hence, the fact that it maximizes the number of parallel classes, 
resolutions, transitive resolutions, and subdesigns, comes as no surprise. 

Finally, we have also computed cycle structures [2] for each design. Design 
1 has a 2-transitive automorphism group, and hence its cycle structure must 
be the same for all pairs of elements (i.e., it is uniform). Remarkably, design 
2 is also uniform and has the same cycle structures as design 1. None of the 
remaining 69 are uniform, although designs 3 and 6 have only two different 
cycle structures. 

For compactness, we list the designs with element set {a, b, ..., y, z, A}, 
listing a block {a, b, c} as abc. We only list orbit representatives for each 
design. To obtain the full set of 1 17 blocks, one applies the group generated by 
the generators given in each case to find the orbits of the representative triples; 
their union is the block set of the design. 

2.1. The nonabelian group of exponent three. We present here the results for the 
nonabelian group of order 27 having all group elements of order 3. We use the 
set of three generators: 

bcaxutmpjkirngfwsAyovehzqdl 
drhealp icfmjxAzqgsbw tnukoyv 
ftoljgazyqspbcndewumkixrvAh 

There are forty nonisomorphic Steiner triple systems carried by this group; 
we present them here in compact form: 

No. Order S Res Orbit Representatives 

1 303264 39 T 729 abc ade afg ahu aix ajp akA alq amo ant arv asz awy 

2 11664 12 T 567 abc ade afg ahk aix ajp alq amo ant arv awy 

3 486 3 R abc ade afh aix ajp alq amo ant arv asz awy 

4 432 3 T 15 abc ade afg ahi akA alv amo ant awy 

5 162 3 T 27 abc ade afg ahi akA alq amo ant arv asz awy 

6 162 3 R abc ade afh air ajp alq amo ant asz 

7 81 3 T21 abcadeafgahkaijalqamoarvawy 

8 81 0 T 6 abc ade afg ahi akm anw arv 

9 81 0 T3 abcadeafgahjainakyasz 

10 54 3 R abcadeafhaijalqamoarv aszawy 
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11 54 3 R abc ade afh ain ajp amo arv asz awy 

12 54 0 T 9 abc ade afg ahi akn alv amo 

13 54 3 T 5 abc ade afg ahk aij alr awy 

14 54 3 R abcade afh ain ajm arv asz 

15 54 3 T3 abc ade afh aix ajv aln asz 

16 54 3 R abcadeafiahlajsakAawy 

1727 0 T5 abcadeafgahiakmantarvaszawy 

18 27 0 T 5 abc ade afg ahi akA alq amo ans awy 

1927 0 R abcadeafhaimajpalqantarvawy 

20 27 0 T 3 abc ade afg ahi akl amo ans 

21 27 0 T2 abcadeafgahiakmansawy 

2227 0 T3 abcadeafgahiaknalqamz 

23 27 0 T I abc ade afg ahi akn alr asz 

2427 0 T2 abcadeafgahjaiqaknasz 

25 27 0 T I abc ade afh aij alq amz awy 

26 27 3 R abc ade afh aij air asz awy 

27 27 0 R abc ade afh aij a/v amo awy 

28 27 0 T I abcade afh aim ajp aln arv 

29 27 0 T 1 abc ade afh aim ajt alq awy 

30 27 0 R abc ade afh ain ajp amz awy 

31 27 0 R abcadeafh aiqajw antarv 

32 27 0 R abc ade afh air ajn alq amo 

3327 0 T2 abcadeafhairajpaltamo 

34 27 0 T I abc ade afh aix ajm alt arv 

35 27 0 T I abc ade afh aix ajm alv ant 

36 27 0 T 2 abc adf ahm akl ans 

37 27 0 T 3 abc adf ahq aik amz 

38 27 0 T I abc adf aht aim akl 

3927 0 T2 abcadfahvaimakn 

40 27 0 T I abc adf ahx akl amz 

2.2. The nonabelian group of exponent nine. In this subsection, we treat the 
cases for the nonabelian group having a subgroup isomorphic to Z9, having 
generators: 

dulefgh ijkamnopqrscAvwxyztb 
beaxAwtvzuygkfjeidhlosnrmqp 

This group carries 18 nonisomorphic triple systems, as follows: 
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No. Order S Res Orbit Representatives 

1 303264 39 T 39 abc ady aeu afi agv anz aqw 

2 11664 12 T 9 abn adA aex afi agy 

3 486 3 R abf adA aex agy aqw 

41 81 0 T5 abladwaeuafiagn 

42 27 0 R abl adf ags amA an z 

43 27 0 T 2 abl adg aex amA anz 

44 27 0 T I abl adi aex amz aqw 

45 27 0 R abl adi aex amA anz 

46 27 0 R abl adj ags amz aqw 

47 27 0 T I abl adj ags amA anz 

48 27 0 N abl ads aeh amw anz 

49 27 0 T I abl ads aei amw anz 

50 27 0 T I abl adv aeh anz aqA 

51 27 0 T 2 abl adv aei anz aqA 

52 27 0 T 3 abl adv aez afi agw 

53 27 0 T 5 abl adw aez afi agm 

54 27 0 T 4 abl adx aeo afi agr 

55 27 0 T 4 abl adx aeu afi agz 

2.3. The group Z3 x Z3 x Z3. For the elementary abelian group Z3, we use 
the three generators: 

bcaefdh igkljnomqrptuswxv zAy 
defghiabcmnopqrjklvwxyzAstu 
jklmnopqrstuvwxyzAabcdefghi 

This group carries five nonisomorphic triple systems, all of which are carried 
as well by at least one of the groups already handled. 

No. Order S Res Orbit Representatives 

1 303264 39 T 81 abc adh ajt amA apx 

2 11664 12 T99 abcadhajvakxalw 

3 486 3 T81 abcadgaeiafjakwalAaoz 

6 162 3 T81 abcadhajvakxalz 

41 81 0 T29 abcadg aej afm alv aoz aqx 
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2.4. The group Z9 x Z3. Here we give solutions for the abelian group Z9 x Z3, 
with generators: 

dime fghijkanuopqrstbvwxyzAc 
bcalnopqrstmduvwxyzAefghijk 

This group carries 15 nonisomorphic triple systems, as follows: 
No. Order S Res Orbit Representatives 

1 303264 39 T 27 abc adq ael afi agn aoy arv 

2 11664 12 T9 advadtaepafiagq 

3 486 3 R abf adA aew agx aoy 

5 162 3 T 9 abc adq ael afi agu aoy arv 

7 81 3 T 3 abv adq ael afi agu 

8 81 0 T 3 abm adr aep afi agy 

9 81 0 T3 abmadraezafiagy 

56 54 3 R abf adt aep agA aoy 

57 54 3 R abf adt aez agA aoy 

58 27 0 T 2 abm adg aes anx arv 

59 27 0 T I abm adi aep aoy aqy 

60 27 0 T 2 abm adi aes anx arv 

61 27 0 T I abm adi aes any arv 

62 27 0 T 5 abm adr aep afi ags 

63 27 0 T 5 abm adr aez afi ags 

2.5. The group Z27. The cyclic designs have been known for over fifty years 
[1]. We include them here for completeness, using the generator: 

bcdefghijklmnopqrstuvwxyzAa 

There are eight nonisomorphic cyclic STS(27): 
No. Order S Res Orbit Representatives 

64 27 0 N abdaelafpagoajs 

65 27 0 N abdaelafpagtajs 

66 27 0 R abdaelafragoajs 

67 27 0 T2 abdaelafragtajs 

68 27 0 T2 abdaeoaflahpajs 

69 27 0 N abdaeoaflahtajs 

70 27 0 N abdaerafvahpajs 

71 27 0 R abdaerafvahtajs 

3. TRANSITIVE KIRKMAN TRIPLE SYSTEMS 

Forty-nine of the Steiner triple systems exhibited in ?2 can be resolved in 
such a way that the Kirkman triple system is also transitive. In the appendix 
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(Supplement section at the end of this issue), we exhibit all nonisomorphic 
transitive Kirkman triple systems of order 27. There are 248 altogether. Hence 
we resort to a compact representation of the systems. 

We list only those parallel classes that suffice to generate the thirteen parallel 
classes under the action of the groups (as given in ?2). Each required parallel 
class is also listed in a compressed manner. Any automorphism of order 3 on 
the Kirkman system must either fix a parallel class, or must move the entire 
parallel class. If it fixes the parallel class, it may either fix the blocks of the 
parallel class, or permute them within the parallel class. In general, for each 
parallel class, some subgroup of the group of order 27 acting on the design fixes 
that parallel class. Hence it suffices to prescribe orbit representatives of the 
blocks in the parallel class in its stabilizing subgroup. 

Each parallel class can therefore be succinctly described using the generators 
from ?2 to specify the stabilizer of the parallel class, and listing orbit repre- 
sentatives for the parallel class under this subgroup. We specify the stabilizer 
of the parallel class by specifying a subgroup code, which is an integer from 
{0, ... , 7}. It is interpreted as follows. For the two groups having all elements 
of order 3, let i1, 7c2, 7(3 be the three generators (in the same order) as given 
in ?2. For the two groups requiring two generators, let 7c2, 7(3 be the two gen- 
erators as given in ?2, and let 7r, = ,3. For Z27, let 7i3 be the generator given 
in ?2, 72 = 7i3 and 7r, = in . It is important to remark that an automorphism 
of order 9 may move a parallel class, while the cube of the same automorphism 
fixes it; hence, we require these redundant generators in specifying the stabilizer 
of each parallel class. 

Now with permutations chosen in this way, write the subgroup code as a 
3-bit binary number b3b2b, ; the stabilizer is found by generating the minimal 
subgroup containing 7( b1 , 7 b2 , and 7(b3, Each parallel class is written as a 1 2 ~~~~3 
subgroup code, followed by orbit representatives for the parallel classes; parallel 
classes are separated in the listing by colons. 

Therefore, to recover the entire resolution, one first finds the stabilizer for 
each parallel class in turn, and applies all permutations in the stabilizer to re- 
construct the parallel class. Then one applies the action of the entire group to 
find all thirteen parallel classes. 

We give an example of the process here. Over the second nonabelian group, 
the following is a compact representation of a Kirkman triple system: 4 adv egj 
fmz: 6 anz: 2 fnu. There are three orbits of parallel classes. To recover the 
orbit representatives for all parallel classes, apply the second generator to 
adv, eg] , f mz, both generators to anz, and the first generator to fnu . This 
yields the three parallel classes: 

adv bxs chr egj tuA lop fmz kqw iny 

anz dot epA bfq gru hsv ciw jlx kmy 

fnu gov hpw iqx jry ksz act diA bem 

Now apply both generators to produce all parallel classes in the orbits of these 
three. The orbit lengths obtained are 9, 1, and 3 for the three parallel classes 
given: 
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adv bxs chr egj tuA lop fmz kqw iny 

dewcuy ils fhk bvA mpq gnt arx joz 

efx Ivz cjm agi buw nqr hoA dsy kpt 

fgy mtw kln dhj uvx ors bip cez aqA 

ghz nxA amo eik vwy cps jqu flt bdr 

hit boy dnp afj wxz clq krv gmA esu 

ijA puz eoq dgk txy Imr asw bhn cfv 

bjk qtv fpr aeh yzA mns cdx iou glw 

aku rwA gqs dfi btz cno ely jpv hmx 

anz dot epA bfq gru hsv ciw jlx kmy 

fnu gov hpw iqx jry ksz act dlA bem 

fow jst env irz dmu hqy abl gpx ckA 

jnw hiu fsA dqz kox imv beg ert apy 
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